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Abstract: For over a century there have been continual efforts to incorporate nature into urban planning.
These efforts (i.e., urban reconciliation) aim to manage and create habitats that support biodiversity within
cities. Given that species select habitat at different spatial scales, understanding the scale at which urban species
respond to their environment is critical to the success of urban reconciliation efforts. We assessed species–
habitat relationships for common bat species at 50-m, 500-m, and 1 km spatial scales in the Chicago (U.S.A.)
metropolitan area and predicted bat activity across the greater Chicago region. Habitat characteristics across
all measured scales were important predictors of silver-haired bat (Lasionycteris noctivagans) and eastern red
bat (Lasiurus borealis) activity, and big brown bat (Eptesicus fuscus) activity was significantly lower at urban
sites relative to rural sites. Open vegetation had a negative effect on silver-haired bat activity at the 50-m
scale but a positive effect at the 500-m scale, indicating potential shifts in the relative importance of some
habitat characteristics at different scales. These results demonstrate that localized effects may be constrained
by broader spatial patterns. Our findings highlight the importance of considering scale in urban reconciliation
efforts and our landscape predictions provide information that can help prioritize urban conservation work.
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Necesidad de Planeación Multiescala para la Conservación de Murciélagos Urbanos

Resumen: Durante más de un siglo ha habido esfuerzos continuos para incorporar a la naturaleza dentro
de la planeación urbana. Estos esfuerzos (es decir, la reconciliación urbana) buscan administrar y crear
hábitats que mantengan a la biodiversidad dentro de las ciudades. Ya que las especies seleccionan el hábitat
a diferentes escalas espaciales, entender la escala a la que las especies urbanas responden a su ambiente es
cŕıtico para el éxito de los esfuerzos de reconciliación urbana. Evaluamos las relaciones especie-hábitat para
especies comunes de murciélagos a escalas espaciales de 50 m, 500 m y 1 km en el área metropolitana de
Chicago (E.U.A.) y pronosticamos la actividad de murciélagos en la región metropolitana de Chicago. Las
caracteŕısticas de hábitat en todas las escalas medidas fueron pronosticadores importantes de la actividad
del murciélago plateado (Lasionycteris noctivagans) y del murciélago rojo occidental (Lasiurus borealis), y la
actividad del gran murciélago marrón (Eptesicus fuscus) fue significativamente menor en los sitios urbanos
que en los rurales. La vegetación abierta tuvo un efecto negativo sobre la actividad del murciélago plateado a
escala de 50 m pero tuvo un efecto positivo a escala de 500 m, lo que indica cambios potenciales en la impor-
tancia relativa de algunas caracteŕısticas de hábitat a diferentes escalas. Estos resultados demuestran que los
efectos localizados pueden ser inhibidos por patrones espaciales más generales. Nuestros resultados resaltan
la importancia de considerar la escala en los esfuerzos de reconciliación urbana y nuestros pronósticos de
paisaje proporcionan información que puede ayudar a priorizar el trabajo de conservación urbana.

Palabras Clave: Chiroptera, conservación urbana, ecoloǵıa de reconciliación, escala, fauna urbana, modelo de
ocupación, monitoreo acústico, selección de variable bayesiana
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2 Scale and Urban Bat Habitats

Introduction

The effects of urbanization on biodiversity (e.g., habi-
tat fragmentation, habitat loss, and altering of ecologi-
cal processes) are well documented (Russo & Ancillotto
2015). Although cities are typically characterized by
lower biodiversity (Aronson et al. 2014; Krauel & LeBuhn
2016), they can contain important habitat for wildlife
(e.g., Fidino et al. 2016; Ives et al. 2016; Magle et al.
2016). Efforts to incorporate nature into urban planning
could increase the quantity and quality of wildlife habitats
within cities (Moskovits et al. 2004; Beatley 2011). These
conservation efforts—known as urban reconciliation—
aim to manage and create habitats that support wildlife
populations, allow populations to remain resilient, and
reduce biodiversity loss in cities (Rosenzweig 2003;
Francis & Lorimer 2011). The long-term success of such
efforts depends on a proper understanding of species–
habitat relationships within cities. Yet, species perceive
and respond to habitats at different scales (Levin 1992),
and ecological studies in urban environments are of-
ten conducted at a single spatial scale (Pickett et al.
2016). Conservation actions may be ill-informed and miss
their mark if they do not account for species-specific
scale dependencies (e.g., Graf et al. 2005; Avelino et al.
2016). Therefore, understanding the scale at which urban
wildlife responds to the environment is critical for urban
reconciliation.

Bats currently face a multitude of anthropogenic
threats, including energy development (Kunz et al. 2007),
roads (Fensome & Mathews 2016), and pesticide ex-
posure (Bayat et al. 2014) and play numerous benefi-
cial roles in natural and human-dominated ecosystems
through pest control, crop pollination, and forest regen-
eration (Kunz et al. 2011). Many bat species can live in
urban spaces (Kurta & Teramino 1992; Gehrt & Chelsvig
2003; Krauel & LeBuhn 2016) and directly or indirectly
provide ecosystem services to such environments (Kunz
et al. 2011); thus, creating, managing, and monitoring bat
habitat in urban environments should be a conservation
priority.

The Chicago, Illinois, region (Fig. 1) in the United
States is highly urbanized but contains a significant por-
tion of protected lands (Moskovits et al. 2004). Follow-
ing the Great Chicago Fire in 1871, city planners cre-
ated an array of protected natural areas in and around
the city (Moskovits et al. 2004). Tallgrass prairies, oak
woodlands, oak savannas, sedge meadows, and prairie
wetlands make up the ecosystems still intact within the
Chicago region (Wang & Moskovits 2001). These pro-
tected areas, along with cemeteries, right-of-ways, and
golf courses, act as habitat patches for urban wildlife
(Magle et al. 2016). Regional conservation organizations
are engaged in coordinated efforts to restore, connect,
and manage these urban habitats in the greater Chicago
area (Moskovits et al. 2004)—making Chicago an ideal

place to study species–habitat relationships that can
be implemented into science-based urban conservation
plans.

We assessed species–habitat relationships for com-
mon bat species at varying spatial scales in the Chicago
metropolitan area. We hypothesized that bat activity is
best predicted by habitat characteristics (i.e., proportion
of tree cover, open vegetation, and impervious surface)
at multiple scales. Furthermore, the influence of habi-
tat characteristics may vary in magnitude and direction
depending on species’ life-history strategies (e.g., forag-
ing and roosting habitat preferences). We sought to rec-
ognize scale-dependent species-habitat relationships that
can better inform future bat-conservation efforts in urban
areas such as Chicago.

Methods

Study Area and Data Collection

To estimate bat activity, we deployed passive acoustic
bat detectors throughout Cook, Lake, and Kane Counties,
Illinois, from 2013 to 2015 (Fig. 1). Cook County is the
second most populous county in the United States and
includes the city of Chicago, the third most populous
city (approximately 2.7 million residents; average popu-
lation density of 7355 people/km2; U.S. Census Bureau
2015). Lake County is directly north of Cook County, has
an average population density of 612 people/km2 (U.S.
Census Bureau 2015), and is predominately suburban.
Kane County is directly west of Cook County, has an av-
erage population density of 383 people/km2 (U.S. Census
Bureau 2015), is the most rural of the three counties, and
consists predominantly of low-density development and
small towns.

In the summer of 2013 we randomly selected 11 sites
in the urban core of Chicago or suburban areas of Cook
and Lake counties (hereafter urban sites) and 9 sites in
exurban or rural locations in eastern Kane County (here-
after rural sites; Fig. 1). Rural sites were >50 km from the
Chicago city center. In 2015, we added 2 additional urban
sites for a total of 13 urban sites and 9 rural sites (n = 22).
Sites were randomly selected from a comprehensive list
of urban green spaces in the Chicago metropolitan area.
Selected sites included remnant natural areas, city parks,
and golf courses that encompassed a variation of land
cover and tree cover within their vicinity. At each site,
we deployed one SM2BAT+ stationary acoustic detector
equipped with one SMX-US omnidirectional microphone
(Wildlife Acoustics, Maynard, MA). Within each randomly
selected site, detector location was chosen based on ac-
cessibility and suitability for acoustic sampling. Each de-
tector and microphone was attached to a tree with little
overhead canopy. Microphones were affixed to poles and
extended roughly 3 m aboveground.
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Figure 1. The distribution and an example of land cover of urban and rural study sites where bats were sampled
in the Chicago metropolitan area (U.S.A.).

Each year sampling was concentrated in 3, 1-week
recording sessions that took place throughout May, July,
and September. The exception was 2013, when sam-
pling was conducted only in July and September. In each
month, a minimum of 3 urban and 3 rural sites were
sampled simultaneously per week, and detectors were
rotated to the next group of sites after a minimum of 6
nights. Detectors were set to record ultrasonic calls in
full spectrum format, beginning at sunset and recording
for 6 hours. Due to logistical constraints, the mean num-
ber of recording nights per session per site was 4.14.
Recordings were scrubbed using SonoBat Batch Scrub-
ber Utility version 5.5 (Sonobat, Arcata, CA). Bat calls
were identified to species with SonoBat version 3.2.1,
with the exception of Myotis spp., which are difficult
to distinguish acoustically and were combined as Myotis.
See Supporting Information for acoustic-detector settings
and SonoBat specifications.

Predictor Variables

To assess species–habitat relationships for bat species at
different scales, we created spatial fixed-radius buffers of
100 m (local), 500 m (medium), and 1 km (broad) around
each sampling site with QGIS (QGIS Development Team
2009). We chose 100 m as our local scale because it

was the smallest scale we could analyze with sufficient
variation in land-cover data. We chose 1 km as our broad
scale because it encompasses the general foraging range
of the bat species identified to have sufficient numbers
of detections for analysis (Kunz 1982; Shump & Shump
1982; Kurta & Baker 1990). The medium scale was cho-
sen to be partway between the other scales.

We extracted the proportions of tree cover, open veg-
etation, and impervious cover within each buffer (Table
1) from the 2010 High-resolution (1-m) Land Cover Data
Set for northeastern Illinois and northwestern Indiana
(hereafter HRLC data set) (Chicago Metropolitain Agency
for Planning 2016) with the raster package in R version
3.3.2 (R Core Team 2016). We chose these habitat char-
acteristics because they are categorically broad, can be
generalizable across urban areas, and tree cover and ar-
eas of open vegetation represent a majority of roosting
and foraging habitats for bats, whereas impervious cover
describes the relative lack of natural habitat in urban en-
vironments (Gehrt & Chelsvig 2003; Russo & Ancillotto
2015; Krauel & LeBuhn 2016). We considered impervious
cover to be the combination of building, road, and other
paved surface categories in the HRLC data set (Fig. 1).
We included a regional-level predictor by denoting sites
in Cook and Lake Counties as urban sites and sites in
Kane County as rural sites (Fig. 1). Open water may be
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Table 1. Predictor variables used to assess the influence of habitat
characteristics at varying scales on bat activity in Chicago, Illinois
(U.S.A.).

Variable Description

TREE100 proportion of tree cover within 100 m of a
site

TREE500 proportion of tree cover within 500 m of a
site

TREE1000 proportion of tree cover within 1 km of a site
OPENVEG100 proportion of shrub and grass cover within

100 m of a site
OPENVEG500 proportion of shrub and grass within 500 m

of a site
OPENVEG1000 proportion of shrub and grass within 1 km of

a site
IMP100 proportion of impervious cover within 100

m of a site
IMP500 proportion of impervious cover within 500

m of a site
IMP1000 proportion of impervious cover within 1 km

of a site
REGIONAL a binary indication whether a site was urban

(1) or rural (0)

an important predictor variable for bat activity (Gehrt &
Chelsvig 2003; Straka et al. 2016). However, we were
unable to analyze this metric because the presence of
open water was often absent at the local and medium-
sized scales around our sites (Fig. 1). Thus, there was
little variation in open-water availability across our study
region (Supporting Information).

Predictor variables were scaled to have a mean of 0
and SD 1. All predictor variables were tested for correla-
tion (|r|) among both variables and scales (|r| � 0.70;
correlation results in Supporting Information). We found
moderate correlation between open vegetation at 100 m
and tree cover at 100 m (|r| = 0.82) and moderate cor-
relation between impervious cover at 100 and 500 m
((|r| = 0.84). Correlation between some scales for spe-
cific land-cover characteristics was high, but correlation
between the different land-cover characteristics within
the same scale were not high. Correlation between tree
cover at 500 and 1000 m was 0.94, correlation between
open vegetation at 500 and 1000 m was 0.93, and corre-
lation between impervious cover at 500 and 1000 m was
0.94. Although correlation among predictor variables can
result in high variability in regression coefficients, our im-
plementation of lasso regression—described below—is a
well-established method to reduce this variability when
multicollinearity exists (Oyeyemi et al. 2015).

Data Analyses

Occupancy Models

Most bats were detected at a majority of sites resulting in
high estimates of occupancy throughout the study area.

Bat foraging calls, specifically, can be difficult to record
in urban areas due to high rates of attenuation (Parkins &
Clark 2015). Therefore, high occupancy rates based on
bat calls alone offer little information about habitat selec-
tion at a site. Repeated activity at a location may provide
a useful metric to determine where bats occur most fre-
quently (Manly et al. 1993). In the occupancy-modeling
framework, the detection probability of a species is a
function of a species’ presence and activity at a site
and can be modeled using habitat covariates to estimate
the relative activity (habitat use) of a species (Royle &
Nichols 2003; Lewis et al. 2015). This approach offers a
useful metric of habitat use for species, such as bats, that
exhibit high occupancy rates across a landscape. Using a
Bayesian hierarchical occupancy model (MacKenzie et al.
2006; Royle & Dorazio 2008), we assessed site-level bat
activity by examining the relationship between predictor
variables and detection probability (Lewis et al. 2015).
For each species, we included only the intercept on the
occupancy parameter (�) and modeled the detection
probability (p) as a function of our predictor variables.
To account for pseudoreplication (here repeated sam-
ples across years) and control for variability in bat activity
across seasons and years, we used a nested random effects
design in which sampling season was nested within year
for the intercept values of � and p (model-formulation
details in Supporting Information).

Variable Selection

For each species, we fitted a single model including all
predictor variables and used Bayesian lasso regression
and variable selection to determine the most parsimo-
nious model and relative variable importance (Lykou
& Ntzoufras 2013). We followed Lykou and Ntzoufras
(2013) and specified the priors for each model coeffi-
cient to be a mixture of Laplace (0, λ) and Bernoulli
(�) distributions (Supporting Information). The Laplace
distribution shrinks values for variables that have low ex-
planatory value toward 0 based on the tuning parameter
λ and reduces the variability of estimates when multi-
collinearity exists (Oyeyemi et al. 2015). At each step
in the Markov chain Monte Carlo (MCMC) if a given
Bernoulli trial for a variable had a value of 1, we sampled
from its respective Laplace distribution. If the Bernoulli
trial took a value of 0, the parameter was not included
in the model at that sample step. Thus, the probability
that a variable would be included in the model (variable
inclusion probability [vip]) was the proportion of times
a model coefficient’s Bernoulli trial took a value of 1
across all MCMC samples. For each model, we assessed
the relative importance of each variable by comparing
the vip of each variable with the mean inclusion proba-
bility of the full variable set. Variables with a vip lower
than the mean inclusion probability were removed from
the final model structure of each species. We retained
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all other variables because collectively they provide the
best information as to what habitat characteristics explain
variability in bat activity. We considered a variable to have
evidence of an effect on bat activity if the 95% Bayesian
credible intervals (BCI) did not overlap 0. We also con-
sidered moderate trends in our data if 90% BCIs do not
overlap 0.

Model Implementation and Predictive Check

Posterior distributions of model parameters were esti-
mated using an MCMC algorithm implemented in JAGS
version 4.2.0 (Plummer 2003) with the runjags package
(Denwood 2016) in R. Seven parallel chains were run
from random starting values for 20,000 iterations after
discarding 20,000 burn-in samples. Model convergence
was assessed by checking that the Gelman-Rubin diag-
nostic statistic for each parameter was <1.1 (Gelman &
Rubin 1992) and by visually inspecting the trace plots of
MCMC samples.

To assess model fit and predictive performance, we
used a leave-one-out approach (Hooten & Hobbs 2015)
to predict the likelihood that the final model for each
species could provide a prediction of an out of sample
data points. Using these likelihoods, we calculated a Mac-
fadden’s pseudo-R2 (1 − �L/�L0; Domencich & McFad-
den 1975), where L is the log likelihood of each removed
data point in our final model and L0 is the log likelihood
of each data point in a null model. This approach esti-
mates the power of the model to predict an out-of-sample
data point relative to a null model. Macfadden’s pseudo-
R2 values from 0.2 to 0.4 indicate a model has strong fit to
the data (Domencich & McFadden 1975; Louviere et al.
2000).

Landscape Predictions

Using the final model for each species, we extrapolated
bat activity probabilities across our study region. To pre-
dict bat activity across the greater Chicago metropolitan
area, we created a grid of points (n = 507,792) spaced
100 m apart over the region of interest with QGIS. The
same predictor variables were extracted at each grid
point and at each scale following the methods described
above. Large, developed cities expand slowly and in rela-
tively concentric rings (Seto et al. 2010), and this pattern
of growth is evident in the Chicago metropolitan area
(Fig. 1). Taking this pattern into consideration and staying
consistent with the original study design, we classified
points within a 50-km fixed-radius area around the city
center as urban and points outside of this radius as ru-
ral. For each species, we used the final model structure
and calculated the probability of bat activity at each grid
point. These values were then converted to a spatial raster
with the raster package in R.

Results

From 726 sampling nights (mean [SD] = 33 [12.17]
nights/site) resulting in 26,903 identifiable calls, we de-
tected 7 bat species across our study area: big brown bat
(Eptesicus fuscus), eastern red bat (Lasiurus borealis),
evening bat (Nycticeius humeralis), hoary bat (Lasiurus
cinereus), silver-haired bat (Lasionycteris noctivagans),
tricolored bat (Perimyotis subflavus), and Myotis. All
species were detected at both urban and rural study sites.
The most frequently detected species at urban (204 days)
and rural sites (234 days) was the big brown bat. The
Myotis species were detected least frequently at urban
sites (combined 18 days), and tricolored bat was detected
least frequently at rural sites (42 days). The three most
common bat species detected were the big brown bat,
eastern red bat, and silver-haired bat. These species were
detected at all sites, and we were able to appropriately fit
our occupancy model to these three species and assess
their site-level activity.

Top Predictor Variables

Mean vip for the big brown bat model was 0.39. Final
predictor variables selected and retained for this model
were the regional-level indicator (i.e., urban or rural sites;
vip = 0.86), TREE100 (0.68), and OPENVEG100 (0.41)
(Fig. 2). The regional indicator was the only predictor
variable that had a significant effect (95% BCI did not
bound 0) on big brown bat activity (β = −0.70; 95% BCI,
−1.32 to −0.13), indicating these bats were more active
at rural sites (Fig. 2).

The final model for silver-haired bat contained
TREE100 (vip = 0.54), TREE500 (0.52), TREE1000 (0.50),
OPENVEG100 (0.72), OPENVEG500 (0.66), and IMP100
(0.64). Mean vip was 0.47. Relationships between the
retained predictor variables and silver-haired bat activity
were all nonsignificant (all 95% BCI overlap 0). However,
OPENVEG100 (β = −0.70; 90% BCI, −1.03 to −0.07)
and IMP100 (β = −0.54; 90% BCI, −1.04 to −0.05) both
showed a moderate negative trend and OPENVEG500
(β = 0.45; 90% BCI, 0.01 to 1.04) showed a moderate
positive trend with silver-haired bat activity (Fig. 2).

Eastern red bat had a final model that included
TREE1000 (vip = 0.95), OPENVEG100 (0.77), OPEN-
VEG500 (0.79), and IMP100 (0.99). Mean vip for this
bat model was 0.56. All retained predictor variables had
a significant positive effect on eastern red bat activity
(Fig. 2).

Landscape Predictions

McFadden’s pseudo-R2 values were 0.20, 0.09, and 0.15
for big brown bat, silver-haired bat, and eastern red bat
models, respectively. These results indicate strong fit for
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Big brown bat

REGIONAL

TREE100

TREE500

TREE1000

OPENVEG100

OPENVEG500

OPENVEG1000

IMP100

IMP500

IMP1000
VIP

0.86

0.68

0.22

0.34

0.41

0.26

0.28

0.28

0.26

0.28

Silver−haired bat

REGIONAL

TREE100

TREE500

TREE1000

OPENVEG100

OPENVEG500

OPENVEG1000

IMP100

IMP500

IMP1000
VIP

0.25

0.54

0.52

0.5

0.72

0.66

0.28

0.64

0.28

0.27

Eastern red bat

Model coefficient

REGIONAL

TREE100

TREE500

TREE1000

OPENVEG100

OPENVEG500

OPENVEG1000

IMP100

IMP500

IMP1000

−2 −1 0 1 2 3 4 5

VIP

0.25

0.41

0.34

0.95

0.77

0.79

0.35

0.99

0.49

0.31

Figure 2. Median posterior distribution values (points), 95% Bayesian credible intervals (BCI) (thin lines), 90%
BCI (thick lines), and variable inclusion probability (vip) for 3 bat species in all habitats and scales (see Table 1).
Variables with a vip lower than the mean overall inclusion probability were set to 0 (grey points and lines).

big brown bat, adequate to poor fit for silver-haired bat,
and good fit for eastern red bat. Due to poor model fit, we
excluded silver-haired bat from our landscape-prediction
analysis. The mean predicted activity probability for big

brown bats across our study region was 0.45. We pre-
dicted high activity (p > 0.70) in 6% of our study area
and low activity (p < 0.30) in 5% of our study area.
Big brown bat was the most common species detected
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Figure 3. Predicted bat activity across the Chicago, Illinois (U.S.A.), region based on the final bat-activity model
for each species (black lines, major waterways; grey boxes, downtown Chicago). The species-combined map is the
probability of big brown bats and eastern red bats being active at the same location.

across the study area, yet higher activity was predicted
in more rural areas (Fig. 3). Eastern red bat had a mean
activity probability of 0.55 across the study region. We
predicted high activity of eastern red bat in 42% of our
study region, and most of the high activity was predicted
in urban or suburban areas (Fig. 3). We predicted low
activity for eastern red bat across 23% of the region. The
mean probability that both species were active in the
same location was 0.25 (Fig. 3).

Discussion

Habitat characteristics at multiple scales influenced the
activity rates of all 3 bat species we examined. Local-,
medium-, and broad-scale features were included in the
silver-haired and eastern red bat models, and the largest
and smallest scale features were included in the final
model for big brown bat. These habitat characteristics,
calculated at appropriate spatial scales, were used to pre-
dict bat activity across our entire study area (including
unsampled locations), revealing potential hotspots for
urban bat conservation. Our results reinforce the idea
that scale is a critical concept in species–habitat relation-
ships and that multiple scales should be considered when
managing and creating urban bat habitat.

Tree cover and open vegetation were included in the
final models of all species. These results are unsurprising
because all three species depend, to some degree, on tree
cover for roosting and open vegetation for foraging and
travel corridors (Betts 1998; Agosta 2002; Limpert et al.
2007). The effects of open vegetation (Fig. 2) on silver-
haired bats at the local (positive influence) and medium
(negative influence) scales are more difficult to explain.
At broad scales, patterns, and distributions of habitat char-
acteristics may influence the importance of characteris-
tics at finer scales (Turner & Gardner 2015). Urban bats
may select forest edges for foraging (Krauel & LeBuhn
2016). Perhaps open vegetation at larger scales is indica-
tive of increased forest edge and thus increased foraging

habitat. The spatial arrangement and patterns of forest
edge at a medium-sized scale may not be recognized by
local-scale measurement. Assessing additional processes
and patterns, such as edge effects, could further explain
diverging effects of unique habitat characteristic at differ-
ent scales. Similarly, this could explain why medium- and
broad-scale tree cover had opposite, yet nonsignificant,
effects on silver-haired bats. However, these two vari-
ables were highly correlated, and we urge caution when
interpreting their effects. Although we used lasso regres-
sion to reduce variability between correlated variables,
the weakness of their effects combined with their high
degree of correlation may have generated the equivocal
effects we observed.

Urbanization is generally considered to have a negative
effect on bat species (Kurta & Teramino 1992; Duchamp
et al. 2004). Our results showed no effect of urbanization
on silver-haired bat and eastern red bat relative to rural
sites (Fig. 2). Gehrt and Chelsvig (2004) also found that
big brown bat, silver-haired bat, and eastern red bat were
detected more frequently in urban areas of Chicago than
in rural and agricultural lands surrounding the city. Al-
though our results do not indicate bats had higher activity
in urban areas, they confirm that urbanization in general
does not have a negative effect on the occurrence of
these species in the Chicago area. We found that big
brown bats were less active in urban areas, contrary to
Gehrt and Chelsvig (2004). However, big brown bat was
the most common species detected across our study re-
gion. Thus, our results may not indicate a negative effect
of urbanization per se, but merely that big brown bats
were more active at rural sites. Our results are difficult to
compare directly with previous research in the Chicago
area (e.g., Gehrt & Chelsvig 2003, 2004) because we did
not distinguish agriculture from the open-vegetation land
cover. However, our findings further signify that urban
areas may provide natural and artificial habitats that are
otherwise limited in rural landscapes (Gehrt & Chelsvig
2004). Thus, managing and monitoring bat habitat in ur-
ban environments should be a conservation priority.
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Our landscape predictions (Fig. 3) revealed hotspots
that could be designated for creating or improving bat
habitats in the Chicago region. Because our predictor
variables were categorically broad and generalizable, this
approach could also be used in other cities beyond
Chicago. Predicting across broad but relevant land-cover
categories may reveal other potential and important pre-
dictors of bat activity. For example, big brown bats had
consistently higher rates of predicted activity along major
waterways (Fig. 3). Riparian areas are important habitats
for urban bats (Krauel & LeBuhn 2016; Salvarina 2016;
Straka et al. 2016). Although we were unable to include
open water as a variable, our landscape predictions illus-
trate that it is an important feature on the landscape for
bats.

The landscape predictions further illustrate stark dif-
ferences in the effect that broad-scale patterns of urban-
ization have on predicted bat activity for each species.
Higher levels of activity in the Chicago urban core were
predicted for eastern red bats, whereas lower activity
was predicted for big brown bats (Fig. 3). These pre-
dictions offer baseline information that can help priori-
tize urban reconciliation efforts. Although our predictive
models were constructed using general landscape vari-
ables, there are likely other factors related to urbaniza-
tion that influence bat activity. Future research should
assess region-specific landscape patterns (e.g., riparian
zones, urban intensity, human densities, light pollution,
anthropogenic noise) that may also influence urban bat
activity.

Manley et al. (1993) recognized that habitat selection
is determined by criteria at a hierarchy of scales (O’Neill
1986), starting from geographical characteristics and ex-
tending to local-scale conditions. Studies in more rural
and remote locations demonstrate that bats select habi-
tat at multiple scales (Limpert et al. 2007; Mendes et al.
2017). Our results indicate this is true for urban bats as
well (Fig. 2). Both silver-haired and eastern red bats had
multiple scales of the same habitat characteristic retained
in their final models. These findings are generally incon-
sistent with previous work conducted in the Chicago
area. Gehrt and Chelsvig (2003) found that microhabitats
had a stronger effect on urban bat activity relative to
landscape features. However, they did not evaluate tree
cover beyond the microhabitat scale (Gehrt & Chelsvig
2003), and tree cover was the only broad-scale land-cover
variable included in a final model for any species in our
study (Fig. 2). These results highlight the importance of
multiscale approaches to urban bat conservation because
noticeable patterns at one scale may be driven by habitat
selection at another scale (Limpert et al. 2007; Turner &
Gardner 2015).

In light of limited funding for conservation (Primack
2014), decisions should be based on the most up-to-date
scientific information. If conservation decisions are ill in-
formed, efforts may be made at inappropriate scales and

diverge from important species-habitat relationships. For
example, if management decisions for the silver-haired
bat were made from information obtained at our local
scale (100 m), one might attempt to reduce vegetative
open spaces and increase core areas of woodlands. Con-
sequently, this would reduce forest patterns and config-
urations that have a positive effect on silver-haired bat
activity at a broader scale (Fig. 2). Our study further rein-
forces Levin’s (1992) claim that there is no single correct
scale to view ecosystems. We recommend that practition-
ers take a multiscale hierarchy approach (O’Neill 1986)
to understand the scales at which species–habitat rela-
tionships exist in urban environments.

An important limitation or constraint of our analysis
was the number of parameters modeled. To be cau-
tious of overparameterization, we limited our analysis to
three important land-cover categories we hypothesized
influenced bat activity. Although these land-cover cate-
gories can be generalizable to other cities, they will dif-
fer in their spatial extent and distribution. For example,
we found no significant correlation between vegetation
cover and impervious cover at our sampling sites, which
may be unique to our study area or study design. City-
specific variation should be considered when assessing
species-habitat relationships across multiple cities. Fur-
ther, patch-level characteristics such as urban complex-
ity, forest complexity, or tree-cover configuration may
also influence urban bats. For instance, site-specific forest
composition was an important factor influencing silver-
haired bat and eastern red bat activity in restored urban
forests throughout Chicago (Smith & Gehrt 2009). Includ-
ing field-collected attributes at the patch level will help
further elucidate additional relationships between bat ac-
tivity and landscape characteristics. As high-resolution
land-cover data become more broadly available, more
categories describing urban, suburban, and rural areas
should be assessed. Finally, understanding the predictive
power of models is important for policy and manage-
ment decisions. Our model for silver-haired bats had poor
model fit. Our results indicated that the final model for
silver-haired bats offered more information than a null
model, but it offered weak predictive power for extrapo-
lating predictions across the landscape. Thus, long-term
monitoring of urban bat activity should be prioritized to
collect more data that will allow for stronger and more
reliable predictions.

Our results demonstrated that urban bats select habitat
at multiple scales. Silver-haired bat and eastern red bat
activity were correlated with habitat characteristics at all
three scales and big brown bat activity was correlated
with habitat characteristics at local and broad scales.
Our study also highlights important habitat characteris-
tics that can predict activity of some bat species in urban
environments. These findings have broad implications for
urban wildlife conservation and urban habitat reconcilia-
tion. Although it is important to understand what habitat
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characteristics are most important for bat activity, it is
just as important to understand at what scale bats are
selecting these habitats. Working within the proper scale
for target species will effectively connect urban restora-
tion efforts with species-habitat relationships—resulting
in more impactful urban reconciliation.
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