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Free-roaming domestic cats (Felis catus) are known to pose threats to

ecosystem health via transmission of zoonotic diseases and predation of

native wildlife. Likewise, free-roaming cats are also susceptible to predation

or disease transmission from native wildlife. Physical interactions are required

for many of these risks to be manifested, necessitating spatial and temporal

overlap between cats and wildlife species. Therefore, knowledge of the

location and extent of shared habitat and activity periods would benefit

management programs. We used data from a 3-year camera trap survey

to model species-specific occupancy and identify landscape variables that

contribute to the distribution of free-roaming domestic cats and eight

native mammal species in Washington, DC. (USA). Our analysis includes five

species that are common prey items of domestic cats, and three species

that are potential disease vectors or are otherwise known to be a risk to

cats. We then predicted the probability of occupancy and estimated the

probability of spatial overlap between cats and each native wildlife species

at multiple scales. We also used kernel density estimations to calculate

temporal overlap between cats and each native wildlife species. Across

spatial scales, occupancy for potential disease vector species was generally

positively correlated with canopy cover and open water. Prey species were

also generally positively correlated with canopy cover, but displayed negative

associations with human population density and inconsistent associations

with average per capita income. Domestic cat occupancy was negatively

correlated with natural habitat characteristics and positively correlated with

human population density. Predicted spatial overlap between domestic cats

and native wildlife was greatest for potential disease vector species. Temporal

overlap was high (>0.50) between cats and all but two native wildlife species,

indicating that temporal overlap is probable wherever species overlap spatially.

Our findings indicate that the risk to and from domestic cats varies across

urban landscapes, but primarily arises from human activities. As such, humans
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are implicated in the negative outcomes that result from cats interacting

with wildlife. Data-driven management to reduce such interactions can

aid in cat population management, biodiversity conservation, and public

health campaigns.

KEYWORDS

occupancy, activity, predation, zoonotic disease, feral cats, management, one health,
public health

Introduction

Free-roaming domestic cats (Felis catus; hereafter, “cats”)
impact native wildlife through predation and the transmission
of disease, posing serious threats to native wildlife (Fredebaugh
et al., 2011; Loss et al., 2013; Loyd et al., 2013; Cove et al.,
2018a; Dubey et al., 2020). Likewise, native wildlife can also pose
risks to cats such as predation by native species like coyotes
(Kays et al., 2015; Larson et al., 2020; Tan et al., 2020) and the
transmission of rabies (Roseveare et al., 2009; Gehrt et al., 2013).
These bidirectional risks are absent when cats are kept indoors,
but manifest themselves when cats are allowed to roam freely
outdoors.

The variation of risk across time and space is a fundamental
concept in ecology (Brown et al., 1999; Mayor et al., 2009;
Gaynor et al., 2019), and is applicable to free-roaming cat
management since the bidirectional risks of cats are not uniform
across the landscape. For instance, predation by cats is greatest
near habitat edges (Kays and DeWan, 2004; Herrera et al., 2022;
Pirie et al., 2022), and predation rates fluctuate based on the
season and time of day (Thomas et al., 2012; Loyd et al., 2013;
Seymour et al., 2020). Likewise, cats face less predation risk
where native predators are scarce (Gehrt et al., 2013; Kays et al.,
2015), and predation risk is presumably greater for cats whose
diel patterns match those of native predators. Similarly, the risk
of cat-wildlife disease transmission increases with heightened
interactions between species (Beran and Frith, 1988; Theimer
et al., 2015). Thus, cats and native wildlife must be in proximity
to each other for these risks to be realized, and the risk of
negative interactions between species will be greatest where
species overlap in space and time (Holmala and Kauhala, 2009).

Location-based management policies that explicitly
consider spatial variation in risk are helpful in managing
wildlife populations (Stevens and Pfeiffer, 2016; Davis et al.,
2021). While permanent removal through adoption or
euthanasia ensures elimination of cat-wildlife risks, trap-neuter-
return (TNR) remains a common free-roaming cat management
strategy that is spatially explicit—cats are trapped, sterilized,
and returned to the same location from which they were trapped
(Longcore et al., 2009). However, this attention to location when
releasing cats is primarily concerned with the individual cat’s
familiarity with its surroundings (Alley Cat Allies [ACA], 2022),

rather than to abate risks to or from cats. If the spatial variation
in risk was an additional consideration in free-roaming cat
management, cats might be spatially separated from areas in
which high risk outcomes are likely. The degree to which cats
and native wildlife overlap can thus be used to quantify the risk
of negative outcomes between cats and native wildlife.

Here we assess the habitat use and diel patterns of cats
and eight native mammal species in Washington, DC. We
assessed landscape variables across multiple spatial scales to
account for variations in species’ spatial scale of response (Rettie
and Messier, 2000; Gallo et al., 2018; Moll et al., 2020). We
also predicted the probability of spatial overlap of cats and
each native species to assess apparent risk of being preyed
upon by cats or serving as a disease or predation risk to cats.
We asked the following research questions: (1) what natural
and anthropogenic features of the urban environment most
influence the distribution of cats and native mammal species
in urban areas?, (2) what is the probability of spatial overlap
between cats and native mammal species?, and (3) to what
degree do activity patterns overlap between cats and native
mammal species?

We hypothesized that the presence of native mammal
species would exhibit a positive correlation with natural features
of the urban environment (e.g., tree cover, open water), but
would have a negative correlation with most anthropogenic
features (e.g., human population density and traffic). Due
to the luxury effect commonly seen in urban ecosystems,
we also hypothesized that native mammals would exhibit a
positive association with average per capita income (Magle
et al., 2021). Conversely, we hypothesized that the presence
of cats would be negatively influenced by natural features
and positively influenced by anthropogenic factors, but would
display a negative relationship with average per capita income
(Gehrt et al., 2013; Cove et al., 2019, in press; Vanek et al.,
2020). Because we hypothesize that the distribution of cats
and native mammals would occupy different ends of an
urban-natural continuum, we predicted that the degree of
spatial overlap would be highest at the fringes of either
species’ habitat requirements and thus allow for spatially
explicit management policies. We further predicted that the
known variation in cat diel activity would result in substantial
activity overlap between cats and all native mammal species
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(Vanek et al., 2020; Bennett et al., 2021). Our findings identify
areas with the greatest potential for bidirectional risk and can
inform management policies that considers the wellbeing of cats
and wildlife alike.

Materials and methods

Study area

Washington, District of Columbia (hereafter “D.C.”) has a
population of approximately 7,05,750 residents (∼4,466 people
per km2; U.S. Census Bureau, 2019), and an estimated 7,296
free-roaming domestic cats (of which ∼35% have undergone
TNR; Cove et al., 2019, in press). D.C. contains two major rivers
and is situated at the ecotone of the coastal plains and Piedmont
regions (Ossi et al., 2015). The climate is temperate/tropical
with an average of 110 cm of annual precipitation and average
annual temperatures ranging from 21.6 to 6.9◦C (National
Oceanic and Atmospheric Administration [NOAA], 2021). An
extensive park system is situated within the densely developed
city (Harnik et al., 2017), resulting in a heterogeneous landscape
of developed gray space, landscaped greenspace, and semi-
natural greenspace (e.g., forested parks). D.C. resides in the
ancestral homeland of the Nacochtank (also called Anacostan)
people, and later the Piscataway people (Tayac, 2009).

Data collection

Passive infrared-sensor camera traps (Reconyx HyperFire 2,
Reconyx Inc., 3828 Creekside Ln, Ste 2, Holmen, WI 54636)
were deployed across Washington, DC. between September-
December 2018 (n = 192), April 2019–January 2020 (n = 867),
and June 2020–October 2020 (n = 471). To select camera
locations, a 64 ha grid was superimposed on the study
area, and grid cells to be sampled were chosen based on
the median household income and predominant landcover
categories within each grid cell (see Herrera et al., 2021 and
Flockhart et al., 2022 for details on the study design). Cameras
were placed at a location (sampling site) within each chosen
grid cell based on accessibility and permitting. Although this
sampling grid informed the original selection of sampling sites,
these social-environmental variables were not used for this
analysis.

Camera locations included public greenspaces (n = 796),
private residences and institutions (n = 441), alleys (n = 265),
and sidewalks (n = 28). Each camera deployment consisted of a
single camera aimed at a probable corridor of animal movement
(e.g., game trails, fence lines, etc.) from a height of <0.5 m,
and was affixed to a vertical substrate using a nylon strap and
cable lock. Each time a camera was triggered, five consecutive
photographs were taken with no delay period. At each sampling

site, a camera was continuously active for 15 consecutive days
and sites were not resampled (Herrera et al., 2021; Flockhart
et al., 2022). Over the course of the study, 11 cameras were
stolen, 8 deployments were tampered with such that they were
no longer collecting data, and 3 cameras were damaged beyond
repair after being struck by vehicles.

Species identification

Photographs taken within 1 min of each other were
considered a single observation. All photographs were
separately reviewed by two individuals, and all animals within
each sequence were identified to species. If species-level
identification was not possible, animals were identified to
the lowest taxonomic level afforded by the photographs.
Observations without animals visible were coded as “blank.” All
photographs were uploaded to the eMammal photo repository
(McShea et al., 2016; see also http://emammal.si.edu).

Spatial scales

Three grid arrays, each at different scales, were overlaid
on our study area using ArcMap 10.8 (ESRI, 380 New York
Street, Redlands, CA, USA). Each spatial scale was greater
than the average domestic cat home range in urban areas
(0.036 ± 0.056 km2; Kays et al., 2020) to achieve spatial
independence, and included: 400 × 400 m (0.16 km2, hereafter
“small”), 800 × 800 m (0.64 km2, hereafter “medium”), and
1 × 1 km2 (1 km2, hereafter, “large”) cell sizes (Figure 1). Grid
cells were only included in our analysis if at least half of the cell’s
area was within D.C.’s administrative boundary (Figure 1). At
each spatial scale, observations from all cameras (sampling sites)
located together within a respective grid cell were combined and
considered a single sampling unit (Figure 1). Respectively, 50,
71, and 77% of the total small, medium, and large grid cells were
sampled.

Observation data

At each spatial scale, observation data from all cameras
located within each grid cell were pooled to create daily
detection histories (detected = 1, not detected = 0, not
surveyed = NA) for the respective cell using the package
“CamtrapR” in R version 4.1.2 (Niedballa et al., 2016; RStudio
Team, 2019; R Core Team, 2020). Species included in this
analysis were domestic cat due to its centrality to the research
questions, and eastern chipmunk (Tamias striatus), eastern
cottontail (Sylvilagus floridanus), eastern gray squirrel (Sciurus
carolinensis), groundhog (Marmota monax), and white-footed
mouse (Peromyscus leucopus) because they are native species
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FIGURE 1

(A) All camera locations (sampling sites) in Washington, DC. (B–D) Sampling grids for each spatial scale. Data from all cameras within each
sampling cell were pooled together. Sampling block colors indicate the number of cameras deployed within each sampling cell.

known to be depredated by domestic cats (George, 1974; Loyd
et al., 2013; Paul and Friend, 2020; Herrera et al., 2022).
Raccoon (Procyon lotor), red fox (Vulpes vulpes), and Virginia
opossum (Didelphis virginiana) were also included because they
are disease vectors or are otherwise known to be a risk to cats
through direct conflict or interference competition (Carey and
McLean, 1983; Jenkins et al., 1988; Sogliani and Mori, 2019;
Zecca et al., 2020; Hennessy and Hild, 2021). Although the
dynamics between coyotes (Canis latrans) and cats is a topic
of growing ecological interest (e.g., Larson et al., 2020), coyote
observations (n = 43) from our study area were too sparse to
sufficiently analyze.

Data analysis

To estimate and predict the spatial distribution of each
species we fitted single-season occupancy models (MacKenzie
et al., 2002) for each species at each spatial scale. Occupancy
models estimate the probability of a species occurring at a
location, while accounting for imperfect detection (MacKenzie
et al., 2002, 2017).

Occupancy variables
We broadly hypothesized that forested habitat (Bozek

et al., 2007; Fidino et al., 2016; Lombardi et al., 2017),
water sources (e.g., Fidino et al., 2016; Lombardi et al.,
2017; Wait and Ahlers, 2020), human population density
(e.g., Luck, 2007; Lombardi et al., 2017), vehicular traffic (e.g.,

Goodwin and Shriver, 2011; Chen and Koprowski, 2015), and
per capita income (e.g., Hope et al., 2003; Clarke et al., 2013;
but see also Magle et al., 2021) would influence the probability
of presence for each species. We initially considered 23 variables
that represented these broader categories and calculated them
for each grid cell at each spatial scale (see Supplementary
Appendix 1 for a list of variables and methods for calculating
each variable). We calculated the variance inflation factor for
each mean-centered variable at each scale using the package
“USDM” in R (Naimi et al., 2014). Variables with a high degree
of collinearity (variance inflation factor > 3) at any scale were
removed from the overall analysis such that each spatial scale
contained the same set of variables. A single variable was
then selected for each category, with preference given to those
that were considered more directly interpretable or deemed to
have greater ecological significance. The final variables included
in our models were percent canopy cover (forested habitat),
percent open water, human population density, average daily
traffic volume of roads within the sampling cell (vehicular
traffic), and average per capita income (neighborhood income).
All variables were scaled and centered to have a mean of 0 and
standard deviation (SD) of 1.

Detection variables
To account for imperfect detection, we considered the

number of cameras active in each grid cell, daily temperature,
daily precipitation, the presence of fog, and moon phase
on detection probability. The number of cameras active
in each grid cell per day was calculated using CamtrapR
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FIGURE 2

Posterior distributions of model coefficients for (A) domestic cat, (B) groundhog, (C) eastern gray squirrel, (D) red fox, (E) white-footed mouse,
(F) raccoon, (G) eastern cottontail, (H), Virginia opossum, and (I) eastern chipmunk. Solid blue lines indicate the full posterior distribution and
shaded regions represent the 95% Bayesian credible interval. Vertical blue lines denote the median posterior value. Distributions colored in light
blue indicate that the 95% credible interval overlapped zero.

(Niedballa et al., 2016). Daily precipitation (cm), presence of fog
(yes = 1, no = 0), and daily maximum temperature (◦C) data
were obtained from local weather stations [National Oceanic
and Atmospheric Administration (NOAA), 2021]. Precipitation
and temperature data were averaged if readings were available
from multiple stations. The percent visible moon for the Eastern

time zone was calculated for each sampling day using SKYCAL
(National Aeronautics and Space Administration [NASA], 2021)
based on the time passed since the last new (0) or full (1)
moon and did not consider nightly cloud cover. Environmental
detection variables were unique to each sampling day rather
than the sampling cell, while the number of active cameras
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FIGURE 3

Occupancy probabilities for domestic cats across Washington, DC, at three spatial scales using the mean posterior value for each parameter.
Cooler colors signify lower occupancy probability, while warmer colors signify higher occupancy probability. Initials below each map denote
the variables whose 95% credible interval did not overlap zero, in their order of magnitude (W = water, C = canopy cover, P = human population
density, I = per capita income, T = traffic). A positive sign preceding each initial signifies a positive relationship, while a negative sign signifies a
negative relationship. Maps show predicted occupancy using the median value for each parameter. Maps depicting predicted occupancy at the
upper and lower limits of the 95% credible interval are available in Supplementary Appendix 4.

was unique to each sampling cell. All variables were scaled and
centered to have mean of 0 and SD of 1.

Model formulation and assessing model fit
We fitted single-season Bayesian occupancy models

(MacKenzie et al., 2017) using the “ubms” package in R (Kellner
et al., 2021), which uses “rstan” for MCMC computation (Stan
Development Team, 2020). A single fully parameterized model
was fit for each species at each spatial scale. All parameters
including intercepts were given vague Normal priors with mean
0 and SD 1 (Northrup and Gerber, 2018). MCMC chains were
constructed using the No-U-Turn Sampler, an extension of the
Hamiltonian Monte Carlo algorithm (Hoffman and Gelman,
2014). Four chains were constructed for each parameter, where
each chain consisted of 100,000 iterations and a burn-in of
50,000 iterations. Model convergence was assessed by visually
inspecting each chain’s trace plot, ensuring the Gelman–Rubin
statistics were <1.1, and ensuring that all effective sample sizes
were greater than 127,000. We considered any variable to have
evidence of an effect if the 95% Bayesian credible intervals did
not overlap zero.

Multiple techniques were used to assess model fit. Model
residuals were compared against predicted values (both
occupancy and detection) to assess the variation of deviance
within each model, where the distribution of residuals was

visually assessed for skew or clustering along the distribution
of predicted values (Gelman et al., 2000; Broms et al., 2016;
Wright et al., 2019). Posterior post-predictive values were
obtained by using the model to simulate 100 datasets and
comparing the proportion of zeros in these datasets against
the proportion of zeros present in the observed dataset at
each spatial scale, with matching proportions indicating good
model fit (Broms et al., 2016; Wright et al., 2019). Additionally,
the Pareto k diagnostic values were calculated for each model,
where values less than 0.5 indicated good model fit (Vehtari
et al., 2017). Finally, the MacKenzie–Bailey chi-squared statistic
and resulting Bayesian p-value were also calculated for each
model, where the Bayesian p-value is interpreted similarly to a
frequentist p-value (MacKenzie and Bailey, 2004; but see also
Wright et al., 2016). Diagnostic tests were conducted using the
“ubms” package (Kellner et al., 2021), and indicated good model
fit for all models (Supplementary Appendix 2).

Estimating the probability of spatial overlap
To assess the spatial overlap of each native wildlife species

with cats, we calculated the percent canopy cover, percent open
water, human population density, average daily traffic volume,
and average per capita income for all grid cells across the
study area, and used our occupancy models to predict the
probability of occupancy for each species in each grid cell

Frontiers in Ecology and Evolution 06 frontiersin.org

https://doi.org/10.3389/fevo.2022.1048585
https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org/


fevo-10-1048585 November 15, 2022 Time: 10:26 # 7

Herrera et al. 10.3389/fevo.2022.1048585

T
A
B
LE

1
M
ea

n
p
re
d
ic
te
d
o
cc

u
p
an

cy
ac

ro
ss

W
as
h
in
g
to
n
,D

C
,f
o
r
ea

ch
sp

ec
ie
s,
an

d
m
ea

n
p
re
d
ic
te
d
o
ve

rl
ap

b
et
w
ee

n
ca

ts
an

d
n
at
iv
e
m
am

m
al

sp
ec

ie
s.

Sp
ec
ie
s

M
ea
n
oc
cu
pa

nc
y

pr
ob

ab
ili
ty

(4
00

m
×

40
0
m
)

M
ea
n
oc
cu
pa

nc
y

pr
ob

ab
ili
ty

(8
00

m
×

80
0
m
)

M
ea
n
oc
cu
pa

nc
y

pr
ob

ab
ili
ty

(1
km

×
1
km

)

M
ea
n
pr
ob

ab
ili
ty

of
ov
er
la
p
w
ith

ca
ts

(4
00

m
×

40
0
m
)

M
ea
n
pr
ob

ab
ili
ty

of
ov
er
la
p
w
ith

ca
ts

(8
00

m
×

80
0
m
)

M
ea
n
pr
ob

ab
ili
ty

of
ov
er
la
p
w
ith

ca
ts

(1
km

×
1
km

)

D
om

es
tic

ca
t

0.
66

(0
.2

8)
0.

75
(0

.2
6)

0.
81

(0
.2

1)
N

A
N

A
N

A

R
ac

co
on

0.
68

(0
.2

2)
0.

82
(0

.1
1)

0.
88

(0
.1

0)
0.

42
(0

.2
0)

0.
61

(0
.2

2)
0.

72
(0

.2
0)

Re
d

fo
x

0.
49

(0
.3

0)
0.

66
(0

.2
7)

0.
77

(0
.2

0)
0.

44
(0

.2
1)

0.
44

(0
.2

1)
0.

61
(0

.2
2)

V
irg

in
ia

op
os

su
m

0.
44

(0
.1

9)
0.

60
(0

.2
1)

0.
67

(0
.1

8)
0.

30
(0

.2
0)

0.
47

(0
.2

5)
0.

56
(0

.2
3)

Ea
st

er
n

gr
ay

sq
ui

rr
el

0.
9

(0
.0

8)
0.

96
(0

.0
2)

0.
95

(0
.0

3)
0.

60
(0

.2
6)

0.
72

(0
.2

7)
0.

78
(0

.2
3)

W
hi

te
-f

oo
te

d
m

ou
se

0.
18

(0
.1

1)
0.

33
(0

.2
0)

0.
46

(0
.2

3)
0.

09
(0

.0
4)

0.
20

(0
.1

1)
0.

33
(0

.1
8)

Ea
st

er
n

co
tto

nt
ai

l
0.

19
(0

.0
9)

0.
31

(0
.1

1)
0.

42
(0

.1
0)

0.
10

(0
.0

5)
0.

22
(0

.1
0)

0.
32

(0
.1

0)

G
ro

un
dh

og
0.

20
(0

.1
9)

0.
31

(0
.2

6)
0.

33
(0

.2
7)

0.
13

(0
.1

5)
0.

24
(0

.2
4)

0.
27

(0
.2

5)

Ea
st

er
n

ch
ip

m
un

k
0.

12
(0

.1
7)

0.
22

(0
.2

7)
0.

25
(0

.2
8)

0.
06

(0
.0

7)
0.

15
(0

.1
7)

0.
20

(0
.2

3)

Th
e

st
an

da
rd

de
vi

at
io

n
(S

D
)f

or
ea

ch
m

ea
n

va
lu

e
is

in
cl

ud
ed

w
ith

in
pa

re
nt

he
se

s.

(including unsampled cells) at each spatial scale. The probability
of spatial overlap between cats and each native wildlife species
was calculated for each grid cell by multiplying the posterior
distribution of predicted occupancy probabilities for cats by
the posterior distributions of predicted occupancy probabilities
for each wildlife species. We derived this parameter for all
grid cells at all three spatial scales. When predicting occupancy
probabilities across the landscape, each detection variable was
held constant at its respective mean value.

Estimating temporal overlap
We considered each species’ 95% kernel activity isopleth, the

smallest duration of time in which 95% of observations occur,
to be each species’ active period (Oliveira-Santos et al., 2013).
Prior to calculation, observation timestamps were converted
from a linear timescale to a circular timescale by equating
each timestamp to its respective value between 0 and 1 (e.g.,
noon = 0.5, etc.), then multiplying each value by 2π to arrive at
radians (Ridout and Linkie, 2009). The “circular” package was
then used to calculate a 95% kernel isopleth with a smoothing
parameter of 5 (Oliveira-Santos et al., 2013; Agostinelli and
Lund, 2022). The smoothing parameter accounts for inordinate
peaks in activity which might arise from different criteria to bin
multiple observations into a single observation (Oliveira-Santos
et al., 2013). Mean observation times were also calculated, then
back-transformed to a linear timescale for ease of interpretation.

Activity overlap was calculated using circular time via the
“overlap” package in R. A smoothing parameter of 3 was
used per Ridout and Linkie (2009). The estimate of overlap
between cats and each species (∆̂4) consists of the proportion
of the larger activity curve that is shared by the smaller activity
curve. The overlap estimate is reported as a value between 0
and 1, where 0 indicates no overlap and 1 indicates identical
activity patterns (Lashley et al., 2018). Cumulative species-
level activity estimates were assumed to be representative of
individual activity patterns (Rowcliffe et al., 2014).

Results

Over 22,268 trap nights, we detected 22 mammal species in
Washington, DC. We collected 33,134 observations of domestic
cat; 31,966 of eastern gray squirrel; 8,067 of raccoon, 2,785 of
red fox, 2,407 of Virginia opossum, 1,044 of eastern cottontail,
980 of eastern chipmunk, 717 of groundhog, and 448 of white-
footed mouse.

Domestic cat occupancy

At the largest scale (1 km × 1 km), the 95% credible interval
for each variable overlapped zero, indicating no strong effect
of the variables that we analyzed at the largest spatial scale
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FIGURE 4

Predicted occupancy probabilities and probability of spatial overlap with cats for (A) groundhogs, (B) eastern gray squirrels, (C) red fox, (D)
white-footed mice, (E) raccoon, (F) eastern cottontail, (G), Virginia opossum, and (H) eastern chipmunk across Washington, DC. Occupancy
color gradient is identical to Figure 2. For each species, the top row depicts the median occupancy probability across the study area. The
second row for each species depicts the median probability of spatial overlap. Maps depicting predicted occupancy and overlap probabilities at
the upper and lower limits of the 95% credible interval are available in Supplementary Appendix 4.
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FIGURE 5

Activity patterns and temporal overlap plotted on a 24 h clock
for panel (A) cats, (B) groundhogs, (C) eastern gray squirrels, (D)
red fox, (E) white-footed mice, (F) raccoon, (G) eastern
cottontail, (H), Virginia opossum, and (I) eastern chipmunk. Plots
depict cat activity density and mean activity time using a dark
blue line, while the light blue polygon and white line are used for
the species of interest. Activity overlap (area beneath both
curves) is colored in dark blue. Note that plot (A) utilizes a
different scale than plots (B–I).

(Figure 2 and Supplementary Appendix 2). At the medium
scale (800 m × 800 m), open water had the greatest negative
influence on cat occupancy (βM = −1.68, 95% BCI = −2.66
to −0.76) followed by canopy cover (βM = −0.78, 95%
BCI = −1.25 to −0.33). Cats were 46.4% less likely to occur
(odds ratio (OR) = 0.55, 95% BCI = 0.26–0.83) at sites with a
1 SD increase from the mean percent open water, and 18.9% less
likely to occur (OR = 0.81, 95% BCI = 0.67–0.92) with a one
SD increase from the mean canopy cover. No variables had a
positive effect on cat occupancy at the medium scale (Figure 3).

Open water also had the greatest negative effect on cat
occupancy at the smallest scale (400 m × 400 m; βS = −1.30,
95% BCI = −1.86 to −0.80), followed by canopy cover
(βS = −0.68, 95% BCI = −0.94 to −0.44), and per capita income
(βS = −0.40, 95% BCI = −0.68 to −0.14). An increase of 1
SD from the mean in canopy cover decreased cat occupancy
by 24.4% (OR = 0.76, 95% BCI = 0.66–0.85). Cat occupancy
would also decrease 46.9% (OR = 0.53, 95% BCI = 0.34–0.73)
with a one SD increase from the mean of open water and
14.1% (OR = 0.86%, 95% BCI = 0.76–0.95) with a one SD
increase from the mean per capita income. Human population
density had the greatest positive effect on cat occupancy at the
smallest scale (βS = 0.83, 95% BCI = 0.48–1.23). Cats were 23%
more likely to occur (OR = 1.23, 95% BCI = 1.14–1.35) at sites
with an increase of one SD from the mean human population
density. The mean probability of domestic cat occupancy across
the entire study area was 0.66 (0.28 SD) at the small spatial
scale, 0.75 (0.26 SD) at the medium spatial scale, and 0.81
(0.21 SD) at the large spatial scale (Table 1 and Supplementary
Appendix 3).

Vector species occupancy

At the largest scale, percent canopy cover had a positive
effect on red fox (βL = 1.0, 95% BCI = 0.22–2.05) and
raccoon (βL = 0.96, 95% BCI = 0.12–1.91) occupancy, and
per capita income had a negative effect on Virginia opossum
occupancy (βL = −0.76, 95% BCI = −1.32 to −0.24). All other
variables’ 95% credible intervals overlapped zero (Figure 2 and
Supplementary Appendix 3).

Canopy cover also had a positive effect on raccoon
occupancy at the medium scale (βM = 1.10, 95% BCI = 0.38–
1.96) and per capita income had a negative effect on Virginia
opossum occupancy (βM = −0.95, 95% BCI = −1.44 to −0.50;
Figure 2). Red fox occupancy at the medium scale was positively
correlated with canopy cover (βM = 1.82, 95% BCI = 1.07–
2.63), open water (βM = 1.63, 95% BCI = 0.32–3.03), and daily
traffic volume (βM = 1.12, 95% BCI = 0.10–2.17), but negatively
correlated with human population density (βM = −0.95, 95%
BCI = −1.88 to −0.02; Figure 2).

At the smallest scale, canopy cover had a positive effect on
red fox (βS = 1.75, 95% BCI = 1.33–2.21), raccoon (βS = 1.42,
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95% BCI = 1.05–1.83), and Virginia opossum (βS = 0.41, 95%
BCI = 0.19–0.63) occupancy, and open water had a positive
effect on red fox (βS = 0.74, 95% BCI = 0.20–1.31) and raccoon
(βS = 0.55, 95% BCI = 0.08–1.07) occupancy (Figure 2). Human
population density had a negative effect on the presence of red
fox (βS = −0.70, 95% BCI = −1.16 to −0.34) and raccoon
(βS = −0.38, 95% BCI = −0.69 to −0.09), and per capita
income had a negative effect on raccoon (βS = −0.31, 95%
BCI = −0.58 to −0.05) and Virginia opossum (βS = −0.87,
95% BCI = −1.14 to −0.62) occupancy (Figure 2 and Table 1).
ORs for each species and each variable at 1 SD from the mean
are available in Supplementary Table 2 and Supplementary
Appendix 3.

Prey species occupancy

At the large spatial scale, canopy cover had a positive
effect on eastern chipmunk occupancy (βL = 1.20, 95%
BCI = 0.59–1.89), per capita income had a negative effect
on groundhog occupancy (βL = −1.53, 95% BCI = −2.26
to −0.88), and human population density had a negative
effect on white-footed mouse occupancy (βL = −1.33, 95%
BCI = −2.56 to −0.19). Each variable’s 95% credible interval
overlapped zero at the large scale for both eastern cottontails
and eastern gray squirrels (Figure 2, Supplementary Table 1,
and Supplementary Appendix 3).

At the medium scale, per capita income had a positive
effect on eastern cottontail (βM = 0.42, 95% BCI = 0.03–
0.83) and eastern chipmunk (βM = 1.19, 95% BCI = 0.62–
1.80) occupancy (Figure 2), but had a negative effect on
groundhog occupancy (βM = −1.48, 95% BCI = −2.09
to −094). Human population density (βM = −0.87, 95%
BCI = −1.57 to −0.21) and traffic volume (βM = −0.84,
95% BCI = −1.80 to −0.04) also had negative effects on
groundhog occupancy (Figure 2). Canopy cover had a positive
effect on both eastern chipmunk (βM = 1.50, 95% BCI = 0.92–
2.14) and white-footed mouse (βM = 0.84, 95% BCI = 0.32–
1.43) occupancy (Figure 2). Similar to the larger scale results,
each variable’s 95% credible interval overlapped zero for
eastern gray squirrels (Figure 2, Supplementary Table 1, and
Supplementary Appendix 3).

At the smallest scale, canopy cover had a positive
effect on occupancy for eastern chipmunk (βS = 0.87, 95%
BCI = 0.57–1.18), white-footed mouse (βS = 0.62, 95%
BCI = 0.29–0.97), and eastern gray squirrel (βS = 1.10,
95% BCI = 0.51–1.75). Per capita income had a positive
effect on occupancy for eastern cottontail (βS = 0.40,
95% BCI = 0.11–0.71) and eastern chipmunk (βS = 1.25,
95% BCI = 0.81–1.73), but had a negative effect on
groundhog occupancy (βS = −1.46, 95% BCI = −1.92
to −1.06; Figure 1). Human population density also had
a negative effect on groundhog occupancy (βS = −0.55,

95% BCI = −0.89 to −0.20; Figure 1). ORs for each
parameter can be found in Supplementary Table 2 and
Supplementary Appendix 3.

Probability of spatial overlap

Predicted overlap of cats and wildlife species varied by
species and scale. Vector species displayed greater predicted
overlap with cats than did prey species (Table 1). Across
species, predicted overlap was greatest at the largest spatial scale
(Figure 4 and Table 1). The species with the highest probability
of overlap with cats was raccoon, with a mean probability of
overlap of 0.72 at the largest spatial scale (Table 1). Eastern
chipmunk has the lowest probability of overlap with cats, with
a mean probability of overlap of 0.06 at the smallest spatial scale
(Table 1).

Activity pattern and temporal overlap

Cats exhibited a cathemeral activity pattern, with a 95%
activity isopleth–the smallest duration of time that contains 95%
of observations (hereafter, “isopleth”) – of 22.45 h with a mean
activity time of approximately midnight. Red fox, raccoon, and
Virginia opossum adhered to nocturnal activity patterns, with
an isopleths of 17.77, 13.56, and 13.19 h and mean activity times
of approximately 00:15, 01:30, and 00:45, respectively. Eastern
cottontail and white-footed mouse were the only prey species to
also exhibit a nocturnal activity pattern, displaying isopleths of
18.32 and 15.60 h with a mean activity time of 01:20 and 00:00,
respectively. Groundhog, chipmunk, and eastern gray squirrel
all adhered to diurnal activity patterns, and displayed isopleths
of 15.17, 13.86, 14.20 h and mean activity times of 13:30, 12:00,
and 13:15, respectively.

The coefficient of overlap (∆̂4) between cats and wildlife was
greatest in nocturnal species. Red fox had the highest degree
of overlap of the vector species (∆̂4 = 0.73), while overlap
between cats and raccoons (∆̂4 = 0.56) and Virginia opossums
(∆̂4 = 0.54) was lower. Eastern cottontail displayed the greatest
temporal overlap with cats of the prey species (∆̂4 = 0.78),
followed by white-footed mouse (∆̂4 = 0.69). Diurnal prey
species—i.e., eastern gray squirrel (∆̂4 = 0.45), groundhog
(∆̂4 = 0.52) and eastern chipmunk (∆̂4 = 0.45)—displayed less
activity overlap with cats than did nocturnal prey species but still
exhibited temporal overlap near or greater than 50% (Figure 5
and Supplementary Appendix 5).

Discussion

Our analysis suggests that cats and native mammal species
overlap both spatially and temporally across Washington, DC.
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Since temporal overlap was high (>0.50) between cats and
all native species except eastern gray squirrel and eastern
chipmunk, our analyses suggest that species are likely to share
active hours wherever they overlap spatially. Because cat-
wildlife activity overlap is plausible across the diel period,
the risk of negative outcomes such as predation and rabies
transmission is more greatly mediated by spatial rather than
temporal overlap. We used single-season occupancy models at
three spatial scales to identify species-habitat relationships of
free-roaming domestic cats and eight native mammal species
common in urban areas. We then used our model results
to estimate the probability of spatial overlap between native
mammals and domestic cats based on the most influential
landscape characteristics for each species (Figure 4).

Our findings largely supported our first and second
hypotheses that native mammal occupancy is correlated with
natural variables, while cat occupancy is correlated with
anthropogenic variables. We also used kernel density functions
to estimate diel patterns and activity overlap between cats and
each species (Figure 5). The results from this analysis supported
our third hypothesis that temporal overlap is substantial
between cats and native mammals. These findings suggest that
species interactions are not likely to be mediated by conflicting
diel patterns, but rather that temporal overlap is possible
wherever there is spatial overlap. Given the inherent risks
presented by interactions among cats and native mammals,
excluding cats from areas with high probabilities of spatial
overlap with native species would preserve the safety and welfare
of both cats and native wildlife.

Our analysis found considerable temporal overlap between
cats and most mammal species. High temporal overlap at
the species level is likely due to the cathemeral activity
pattern displayed by cats allowing for temporal overlap with
other species across the entire diel period regardless of
those individual species’ diel patterns. Individual cats are
not continuously active, but the collective cathemeral pattern
is achieved by staggered active periods among individuals
(Oliveira-Santos et al., 2013). Although our study examined
the collective activity pattern of cats, management efforts
may benefit from future research which examines how these
activity patterns differ across the urban landscape and correlate
with landscape characteristics (Gallo et al., 2022). Because
the species-level opportunity for temporal overlap is relatively
indiscriminate, opposing diel periods between cats and other
mammal species cannot be relied upon to predict interactions
between cats and wildlife. Rather, spatial overlap may prove
more insightful since cats (as a species) can be considered
as constantly active wherever they occur across the urban
landscape.

The spatial distribution of cats was not associated with
any variables at the large spatial scale, indicating that the
distribution of cats is primarily influenced by smaller-scale
landscape features. At the medium and small spatial scales,

cats demonstrated negative associations with open water and
canopy cover (natural features) but had positive associations
with high human population density and low-income areas
(anthropogenic features). These findings are consistent with
previous research on outdoor cats that have found free-roaming
cats tend to stay within approximately 100 m of their home and
spend most of their time (>90%) in built environments (Gehrt
et al., 2013; Doherty et al., 2015; Cove et al., 2018b, in press; Kays
et al., 2020). Our results further support the notion that humans
influence where cats are found in urban areas rather than habitat
availability alone (Doherty et al., 2015).

Since humans heavily influence the spatial distribution of
cats, humans also determine the risks faced by cats and the
risks that cats impose on native wildlife–signifying that actions
can be taken to mitigate these bidirectional risks. Prohibiting
the release (e.g., TNR) or subsidization (e.g., feeding) of cats
in areas where spatial overlap with vector species is high may
reduce the risk of disease transmission (Gerhold and Jessup,
2013; Theimer et al., 2015). Likewise, limiting cats from areas
of high spatial overlap with native prey species would likely
reduce mortality from cats (Seymour et al., 2020; Herrera
et al., 2022). Environmental characteristics which correlate with
species-specific habitat use can offer insight regarding potential
spatial overlap, and thus inform management practices which
reduce cat-wildlife interactions.

We found that in most cases, native mammal species
exhibited the opposite habitat requirements compared to cats.
While cats had a negative association with canopy cover and
water at the small and medium scales, all native species
except groundhog and white-footed mouse exhibited positive
responses to canopy cover, and red fox and racoon had a
positive response to water at the same scales. Conversely,
cats had a higher probability of occupancy in areas of high
human population density at the smallest spatial scale, yet
groundhog, red fox, and raccoon had a negative response to
human population density at that same scale. These divergent
habitat relationships suggest that cats and native mammals can
be spatially separated in the urban environment if cat population
management is considerate of these differences and prohibits
cats near favorable wildlife habitat.

The risk of disease transmission between cats and wildlife
is still possible regardless of spatial (e.g., transmission of
toxoplasmosis to other ecosystems via runoff ; Conrad et al.,
2005) or temporal (e.g., transmission of toxoplasmosis via fecal
oocytes; Davis et al., 2018) overlap, but is most apparent when
both spatial and temporal overlap are achieved (Holmala and
Kauhala, 2009). Unlike toxoplasmosis, rabies requires physical
interaction to be transmitted (Beran and Frith, 1988). Of the
three vector species included in this analysis, raccoon and red
fox are the most likely to transmit rabies to cats (Carey, 1982;
Jenkins et al., 1988; Blanton et al., 2010; Ma et al., 2021). The
mean probabilities of spatial overlap between domestic cats
and either raccoon or red fox were substantial (Figure 4). The
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notable degree of spatial overlap between cats and these species
may facilitate routes of transmission between the species, and
subsequently to humans (Roseveare et al., 2009; Keesing and
Ostfeld, 2021), bearing troubling implications for both public
health and animal welfare.

Vaccination of animals significantly reduces the risk of
disease transmission throughout a community (Roebling et al.,
2014; Pieracci et al., 2019), but is not a reliable means of
stopping transmission among free-roaming cats. Cat population
control efforts, such as TNR, often vaccinate cats prior to their
release (e.g., Kreisler et al., 2019). However, cats enrolled in
TNR programs are rarely trapped more than once, allowing
some vaccines to expire within their lifetime (Roebling et al.,
2014). Furthermore, herd immunity cannot be achieved if
the transmission rate exceeds the vaccination rate, which is
often the case for TNR programs (Roebling et al., 2014).
Since vaccination of free-roaming cats does not reliably inhibit
disease transmission, mitigation strategies must rely on the
disruption of transmission via restricting contact between cats
and common vectors (Beran and Frith, 1988; Roebling et al.,
2014). Management practices that restrict free-roaming cats
from areas where such contact is probable (areas of spatial
overlap) can achieve such disruption (Roebling et al., 2014).

The risk of zoonotic disease transmission is further
amplified by biodiversity loss (Jones et al., 2008; Johnson et al.,
2020; Keesing and Ostfeld, 2021), such as that attributed to
free-roaming cats (Loss et al., 2013; Loyd et al., 2013; Doherty
et al., 2016; Loss and Marra, 2017). Thus, native biodiversity
would benefit from management that simultaneously seeks
to preserve habitat and remove non-native predators such
as free-roaming cats from habitat patches. Yet, these efforts
could be thwarted by cats living outside of, but still able to
access, those habitat patches. Our study found that spatial
overlap between cats and prey was relatively limited due
to divergent habitat associations. However, cats are known
to have higher rates of predation at forest edges (Kays
and DeWan, 2004; Herrera et al., 2022; Pirie et al., 2022).
Location-specific cat management policies that minimize free-
roaming cats based on the probability of species overlap might
address this concern by limiting cat populations in habitat-
adjacent areas where the probability of overlap is still relatively
high.

Our study identifies landscape variables that contribute
to the occupancy of several native mammal species in
urban areas. Our findings vary by species and scale, but
broadly indicate that wildlife species are primarily driven by
habitat availability (canopy cover and access to water), while
free-roaming domestic cats display inverse associations with
habitat availability and respond positively to anthropogenic
variables (human population density and low socioeconomics).
Furthermore, our study finds that cats are active, at the
population level, across the entire diel period. Thus, if a wildlife
species overlaps with cats spatially, it also overlaps with cats

temporally to some degree. Free-roaming cat management
programs and public health programs alike would benefit
from the explicit consideration of potential species overlap
across the landscape. Since temporal overlap is ubiquitous,
management strategies should focus on spatially separating cats
from wildlife, and thereby reduce risks to both populations.
While such risks can be avoided altogether by keeping cats
indoors—until that goal is realized—removing or excluding
cats from areas with high probabilities of spatial overlap with
various wildlife species would provide an intermediate solution
that simultaneously protects biodiversity and the wellbeing
of domestic cats.
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